

Travaux Dirigés Analyse des signaux 1D

Professeur: Momar SOURANG

Compétences évaluées

- Quantifier un signal
- Décomposer un signal

Description

• Dans cet exercice, vous devrez répondre aux questions à l'aide de calculs et des notions vues précédemment dans le cours.

Questions

1) On relève les températures pendant 3 jours et on obtient le tableau suivant :

Jour	Température
1	15
2	20
3	21

Quel est la	dimensionnalité di	ı signal ''Tem	pérature'' ? :
-------------	--------------------	----------------	----------------

Attenti	Quel est la dimensionnalité du signal "Température" ?: on, plusieurs réponses sont possibles.
	Un signal 3D
	Un signal 2D
	Un signal 1D

2) On appelle Q la quantité de particules fines présentes dans l'atmosphère. On relève cette quantité toutes les heures pendant un an (365 jours).

Quelle est la dimension du vecteur qui représente Q(t) ?

О	8760
0	365
0	24
0	1

3) Pour cette question, vous pouvez utiliser un logiciel de calcul ou une calculatrice si vous le souhaitez.

Quelle est la valeur efficace du signal suivant ? :

$$\vec{u} = \begin{bmatrix} 1\\2\\3\\4\\-1\\-2\\-3\\-4 \end{bmatrix} \qquad \begin{array}{c} 2.7386\\2.9277\\0\\0\\7.5 \end{array}$$

4) Un signal à valeurs positives ou négatives contient 10 points de mesure. On rajoute un point de mesure.

Que fait l'énergie du signal?

- © Elle diminue
- Elle augmente
- Elle augmente ou diminue, cela dépend du signe du nouveau point rajouté
- 5) Parmi les vecteurs suivants, lesquels sont unitaires ? (Essayez de faire les calculs par vous-même, sans passer par un logiciel)

Attention, plusieurs réponses sont possibles.

$$egin{aligned} \Box & ec{u}_1 = egin{bmatrix} 0 \ 0.5 \ 0.5 \ 0 \end{bmatrix} \ ec{u}_2 = egin{bmatrix} 1/\sqrt{2} \ 0 \ 1/\sqrt{2} \ 0 \end{bmatrix} \ ec{u}_3 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix} \end{aligned}$$

$$ec{u}_4 = \left[egin{array}{c} 0 \ -1 \ 0 \ 0 \end{array}
ight]$$

6) Soit quatre vecteurs:

$$ec{u}_1 = egin{bmatrix} 3 \ 0 \ -1 \ 2 \end{bmatrix}, \quad ec{u}_2 = egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix}, \quad ec{u}_3 = egin{bmatrix} -1 \ 0 \ -1 \ 1 \end{bmatrix}, \quad ec{u}_4 = egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

Cocher la ou les bonnes réponses :

- \square $\vec{u}_1 \perp \vec{u}_2$
- \square $\vec{u}_1 \perp \vec{u}_3$
- \square $ec{u}_2 \perp ec{u}_3$
- $\ \square \ \vec{u}_1$, \vec{u}_2 , \vec{u}_3 et $\ \vec{u}_4$ forment une base orthonormée.